

## EVALUATION OF THE EFFECT OF PGV/PGA RATIO OF STRONG GROUND MOTIONS ON RESPONSES OF SOIL STRUCTURE SDOF SYSTEMS

Mohammad DAVOODI

Assistant Professor, Dept. of Geotechnical Earthquake Engineering, IIEES, Tehran, Iran m-davood@iiees.ac.ir

Mani SADJADI

PhD Student, Dept. of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran mani.sadjadi@srbiau.ac.ir

Keywords: Soil-Structure Interaction, SDOF System, Strong Ground Motion, PGV/PGA Ratio

Generally, in order to evaluate the seismic demand of structures, it is assumed that the structure is located on a rigid soil. However, with increasing the soil flexibility there will be significant variations in the structural response, i.e. the effects of Soil-Structure Interaction (SSI). Furthermore, in the near-field zone, pulse-like motions play crucial roles in the design of structures. This paper addresses the effects of Peak Ground Velocity to Peak Ground Acceleration ratio (PGV/PGA) of nearfault ground motions as a compound intensity index that can describes the frequency characteristics of ground motion on response of various soil-structure SDOF systems. A total 49 near-field ground motions records were selected which have been classified into two categories: first, records with a strong velocity pulse, (i.e. forward-directivity); second, records with a residual ground displacement (i.e. fling-step).

Parametric studies between PGV/PGA ratio of pulse-like ground motions and maximum relative displacement ( $U_{max}$ ) indicate that with increase in structure-to-soil stiffness ratios( $\overline{S}$ ), earthquakes with higher PGV/PGA ratio produce greater responses. Moreover, increasing in slender ratios ( $\overline{h}$ ) and decreasing in mass ratios ( $\overline{m}$ ) result in the responses of soil-structure SDOF systems become greater in all structure-to-soil stiffness ratios.

| No. | Earthquake   | Year | Station                   | M <sub>w</sub> | Dist.<br>(km) | PGA<br>(g) | PGV<br>(cm/s) | PGD<br>(cm) |
|-----|--------------|------|---------------------------|----------------|---------------|------------|---------------|-------------|
| 1   | San Fernando | 1971 | Pacoima Dam-Left Abutment | 6.61           | 11.86         | 1.45       | 115.66        | 30.46       |
| 2   | Gazli        | 1976 | Karakyr                   | 6.8            | 12.82         | 0.599      | 64.94         | 24.18       |

Table 1. The characteristics of near-field ground motions with forward-directivity effect (The normal component)

Table 2. The characteristics of near-field ground motions with forward-directivity effect (The parallel component)

| No. | Earthquake   | Year | Station M <sub>w</sub>    |      | Dist.<br>(km) | PGA<br>(g) | PGV<br>(cm/s) | PGD<br>(cm) |
|-----|--------------|------|---------------------------|------|---------------|------------|---------------|-------------|
| 1   | San Fernando | 1971 | Pacoima Dam-Left Abutment | 6.61 | 11.86         | 0.827      | 34.43         | 18.67       |
| 2   | Gazli        | 1976 | Karakyr                   | 6.8  | 12.82         | 0.71       | 71.05         | 24.7        |

| Tuble 5. The characteristics of hear-field ground motions with hing-step effect |            |      |         |       |                           |               |            |               |             |
|---------------------------------------------------------------------------------|------------|------|---------|-------|---------------------------|---------------|------------|---------------|-------------|
| No.                                                                             | Earthquake | Year | Station | Comp. | $\mathbf{M}_{\mathbf{w}}$ | Dist.<br>(km) | PGA<br>(g) | PGV<br>(cm/s) | PGD<br>(cm) |
| 1                                                                               | Chi-Chi    | 1999 | TCU074  | EW    | 7.6                       | 13.75         | 0.59       | 68.9          | 193.2       |
| 2                                                                               | Chi-Chi    | 1999 | TCU074  | NS    | 7.6                       | 13.75         | 0.37       | 47.95         | 155.4       |

Table 3. The characteristics of near-field ground motions with fling-step effect



Figure 1. Relationship between the relative displacement of soil-structure SDOF system and PGV/PGA ratio

## REFERENCES

Corigliano M (2007) Seismic Response of Deep Tunnels in Near-Fault Conditions, Ph.D. Thesis, Politecnico di Torino, Italy

Davoodi M, Sadjadi M, Goljahani P and Kamalian M (2012) Effects of Near-Field and Far-Field Earthquakes on Seismic Response of SDOF System Considering Soil Structure Interaction, *15th World Conference on Earthquake Engineering*, Lisbon, Portugal

Somerville P, Smith N, Graves R and Abrahamson N (1997) Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity, Seismological Society Letters, 68(1): 180-203

Stewart JP, Chiou S, Bray J, Graves R, Somerville P and Abrahamson N (2001) Ground Motion Evaluation Procedures for Performance-Based Design, Pacific Earthquake Engineering Research Center (PEER), Report no. 09

