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ABSTRACT

It has been well proved that seismic base isolation systems, as passive tools of structural control,
mitigate the intensity of damage caused by earthquakes. On the other hand, structures are often built in
irregular plans, which lead to much more damage under earthquake motions. So, the present research dealt
with the dynamic interaction of asymmetric base-isolated structures in a new point of view. The motion
equations were presented in two coordinates: one fixed on the building base (inertial or global coordinate)
and the other at the torsional isolation level (local coordinate), which led to linear and nonlinear forms of
equations, respectively. Two types of structures were defined with different natural frequencies. Responses
of both linear and nonlinear models for the two types of structures under harmonic effects were compared
while analyzing time history and frequency. Some non-linear phenomena such as saturation and energy
transfer between the modes in such structures were observed. Historical response peaks of linear and
nonlinear models under real earthquake were compared in terms of various base torsional natural frequencies
of the base isolation system in different directions. It can be inferred from the results of the analysis that
nonlinear responses can be more critical than linear ones and design prescriptions should be adapted
regarding nonlinear effects.

INTRODUCTION

Severe damage to buildings, as a result of earthquake, is caused by torsional motions due to irregularity.
Observations have shown that earthquakes can cause more damage to asymmetric-plan structures than
comparable symmetric-plan ones. Today, base isolation of buildings is a conventional approach to earthquake
resistance. The prominent goal of this method was to reduce the displacement of the main structure by moving
elastomeric bearings installed on the substructures. It has been demonstrated that the base isolation is the common
method of damage reduction in asymmetric structures (Kelly and Naeim, 1999).

Many previous works have emphasized the linear model of isolated structures in the global coordinate
system. Kilar and Koren (2009) determined the most appropriate distribution of isolators in the asymmetric
plan; they observed that, when the center of mass was based on the center of distribution of the base
isolation, the torsional effect was reduced in the isolation system. Seguín et al. (2008) studied the earthquake
response of isolated structure with lateral-torsional correlation. The results showed that the UBC code did
not have accurate estimation of the edge displacement under the static approximation; so, it required precise
revision in the mentioned subject. Sharma and Jangid (2009), by utilizing the motion equations of the
isolated structure, showed that high initial stiffness in the isolation system could create intense modes in the
superstructure and lead to more displacement at the story level. The common point of such studies was in
exploiting the dynamics of models because of lateral-torsional coupling in the global coordinate.
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Several studies have also investigated the nonlinear dynamical behavior of structures. For instance,

inclined cables carrying moving oscillators (Sofi, 2013) and inclined beam subjected to moving mass
(Mamandi et al., 2010b, Mamandi et al., 2010a) have been studied in terms of local coordinate and nonlinear
inertia as well as some corresponding nonlinear phenomena.

On the whole, most researchers in the field of structural engineering have paid less attention to the
nonlinearity of inertia in conventional skeleton buildings. Even considering the smallest responses and
excitations affected by the nonlinear terms in the governing equations of the nonlinear system is the
substantial point which could lead to the unusual and strange phenomena. Saturation, jump, hysteretic cycle,
etc. are nonlinear phenomena that are not observed in the linear models of mechanical systems (Nayfeh,
2000). So far, DOFs of structures have been defined on the direction of fixed axes of the global system in the
asymmetric isolated structures. The result of this conventional approach leads to the motion equations of
isolated structures in the linear form, while the axes representing the parameters of structural stiffness are not
fixed and rotate by the angle of twisting floor. Hence the equations should be calculated based on these
rotational axes. This novel approach in the definition of dynamical characteristics of structures leads to
dramatic changes in the dynamic equation governing the torsional-lateral coupled behavior of the irregular
isolated structure (nonlinear form). The main goal of this paper was to derive and compare the motion
equations of the linear and nonlinear models of the one-way asymmetric isolated structure. Numerical
analysis was carried out by defining two specific types of structures subjected to harmonic excitations.
Historical response peaks of such models were compared in terms of various torsional natural frequencies of
substructure in different directions. The paper was concluded with a brief discussion of the obtained results.

EQUATIONS OF MOTION

An isolated single story structure with one-way asymmetric plan was studied. Floor diaphragms of the
superstructure and base isolation were assumed rigid in its own plane and plane frames ran in two orthogonal
directions. The floor masses (i.e. ms and mb) were distributed uniformly at the floor levels. The resisting
elements such as beams and columns provided elastic forces in the opposite direction of translational
motions and proportional to their in-plane stiffness. Hence, the center of resistance coincided with the center
of stiffness. Centers of mass and stiffness were denoted by C.Mb and C.Rb in the base isolation and C.Ms and
C.Rs in the superstructure, respectively. C.Mb and C.Ms were situated along a line about the vertical axis Z.
Due to the asymmetric distribution of stiffness only about Y axis, C.Rb and C.Rs were at distances exb and exs

from the center of mass along X axis.
Earthquake excitations (rg) entered the building under arrival angle β from X. Two coordinates were

defined in this research. Global coordinate system (XYZ) was fixed on the building base (Chopra, 2007) and
local ones (xbybzb) were fixed on the mass center of the base isolation system (C.Mb) which rotated at
rotational angle θb (Fig. 1). Because of the larger amount of stiffness of the superstructure in comparison
with that of the base isolation, structure rotation θs had a lower order than the base one θb. So, all the stiffness
and damping were described in new directions of the substructures' floor edges.

The motions of the base isolation and superstructure floors were described by 6-DOFs in the directions
of global coordinate axes, respectively: displacement in the X-direction, uXb and uXs, displacement in the Y-
direction, uYb and uYs, and rotation of the floor about the vertical axis Z through the center of mass, uθb and
uθs. Such DOFs were also denoted by uxb, uyb, and uθb for the base isolation and uxs, uys, and uθs for the
superstructure along local coordinate axes.

Static and dynamic characteristics including stiffness (kxb, kyb, kθRb, kxs, kys and kθRs) and damping (cxb,
cyb, cθb, cxs, cys and cθs) as well as the DOFs of the base isolation and superstructure were defined along the
fixed axes of global coordinate. It means that these parameters were independent from the torsion of the base
isolation floor (Fig. 1a). However, the axes representing structural stiffness and damping parameters were
not fixed and rotated with the torsional angle of the base floor; in other words, these parameters could be
better defined as local variables in the directions of rotary coordinate fixed on the mass center of the base
isolation (Fig. 1b). In Fig. 1, initial position and relative motions of base isolation and superstructure
diaphragm are denoted by pale, normal, and dark grey rectangles, respectively.
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(a) (b)
Figure 1. Global (XYZ) and local (xbybzb) coordinates and directions of static and dynamic characteristics of the base

isolation and superstructure consisting of stiffness and damping in (a) linear and (b) nonlinear models

Lagrangian method was employed to achieve the equations of linear and nonlinear models (Amin
Afshar and Amini, 2012, Amini and Amin Afshar, 2011). Motion equations of the isolated structure in the
global and local coordinates were computed by Eq. (1).
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in which qi are the generalized coordinates of the 6-DOFs defined in either the global system (uXb, uYb,
uθb, uXs, uYs, and uθs) or local one (uxb, uyb, uθb, uxs, uys, and uθs), Fqi are external non-conservative forces such
as excitation and damping forces, and L is the Lagrangian function defined as L=T–V, where T and V
represent the kinetic and potential energies, respectively. First, the potential energy stored in resisting
elements and total kinetic energy were calculated by Eqs. (2) and (3), respectively.
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where rb and rs are the floor radii of the gyration of the base isolation and superstructure about the
center of mass, respectively. The global variables were related to the local ones by rotating the local axes
counter-clockwise at angle θb utilizing Eqs. (4) – (9).
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Eqs. (2) and (3) were inserted in Eq. (1); afterwards, Eq. (1) was applied for each generalized
coordinate of the global system. Motion equations of the linear model were thus obtained.
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Eqs. (4) - (9) were inserted in Eq. (3); then, Eq. (1) was applied to each DOF of the local system.
Motion equations of nonlinear model of isolated structure were also obtained.
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in which cxb, cyb, cθb, cxs, cys, and cθs are damping coefficients of the base isolation and superstructure
and gXu and gYu are translational ground accelerations in the X and Y directions. In Eqs. (16) - (21), all the

accelerations, velocities, and displacements were defined in the directions of local coordinate axes; but, such
variables included in Eqs. (10) - (15) were defined in the direction of global coordinate axes. The substantial
difference between two models was in terms of the right side of their equations where nonlinear inertial
terms can be observed in the nonlinear model. Obviously, in numerical analysis, nonlinear model responses
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calculated by Eqs. (16) - (21) should be transferred to global coordinate by the corresponding rotation matrix
and then compared with that of the linear ones.

NUMERICAL ANALYSIS

To evaluate performance of the linear and nonlinear models, numerical analysis is done by harmonic
excitations and Kobe 1995 earthquake. The natural frequency of symmetric direction of the superstructure
(ωxs) related to the one story building was considered equal to 20π (rad/s). Other frequencies of the
superstructure and base isolation were assessed by ωxs as follows:
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xs xs xs


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in which Ωxb, Ωyb, Ωxs, and Ωys are the ratio of the translational uncoupled frequencies and Ωθb and Ωθs
are the ratio of the rotational ones. Obviously, the stiffness of an isolator in X and Y directions are identical,
which leads to Ωxb=Ωyb.

Two structures were defined to study linear and nonlinear responses. The differences were just
observed in their Ωθb and exb/r. The other structure properties were equivalent to each other (Table 1). The
ratios were selected so that at least one of the torsional-lateral correlated frequency ratios of the structure
type 2 could be equal to 0.5; however, this feature was not provided in the first one (Table 1).

Table 1. Properties of two types of structures
Ω2Ω1ms/mbexs/rexb/rΩysΩθsΩxsΩybΩθbΩxbType No.

1.5520.86350.20.60.50.710.10.150.11
1.3340.50050.20.80.50.710.10.1050.12

The responses were employed for 6-DOFs of motion of the base isolation and superstructure, i.e. uxb,
uyb, uθb, uxs, uys, and uθs, in time history and frequency content analyses. Frequency domain responses were
obtained using a fast Fourier transform (FFT) to determine the contribution of the structural modes in the
absorption of the excitation energy. The frequencies corresponding to the peak points in the frequency
contents denotes the natural frequencies of the dominant modes of structure and peak points denotes the rate
of energy absorption by natural modes or excitation frequencies.

Due to the larger stiffness of the superstructure to the base, the superstructure acted as a rigid body on
the soft base isolation affected by earthquake. Two cases were defined between torsional-lateral correlated
frequency and symmetric one. In the first manner, the ratio of the first asymmetric to symmetric frequency
was assumed to equal 0.5 (Ω1=0.5) called proportional resonance (Eq. (23)); in the second one, Ω2-Ω1=1 was
called subtractive combinatorial resonance (Eq. (24)).

2 2 2 212 16 3 0b xb yb ybe     
(23)

2 2 2( ) 1Rb yb xb ybe     (24)

The resonances were employed during comparing maximum historical responses of the rigid
superstructure with the range of base isolation torsional frequency under Kobe earthquake; therefore, the
superstructure properties (Ωxs, Ωys, Ωθs, and exs/r) were assumed constant as in Table 1, whereas the base
isolation properties were obtained based on Eqs. (23) and (24).

RESPONSE TO HARMONIC EXCITATIONS

Excitation force vector or ground acceleration is defined as the harmonic force equal to Aω2sin(ωt),
where ω is excitation frequency and A is ratio of ground acceleration amplitude to radius of gyration. In
further studies, rather than excitation frequency ω, dimensionless parameter Ω equal to frequency ratio ω/ωx1

has been used, where ωx1 is natural frequency of the first mode of the symmetric direction, excitation
amplitude is 0.05, and entry angle and structure damping ratio are considered of 60° to the X axis and 2%,
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Initially, harmonic excitation with excitation frequency equal to the first mode of symmetric frequency
(Ω=1) was exerted on structure 1 (Fig. 2). It can be observed that responses of both linear and nonlinear
models were exactly identical in the time and frequency response. The peak values of the response in the
directions of X, Y, and θ occurred at the first mode of symmetric frequency.

Figure 2. Time history and frequency content of structure type 1 under frequency ratio Ω=1

Time history and frequency content of the structure type 2 were investigated under first mode of
symmetric frequency (Fig. 3) and first torsional-lateral correlated frequency (Fig. 4). In the time history, the
nonlinear DOFs acted differently from that of the linear one. In Fig. 3, both linear and nonlinear models had
a peak in the first mode of symmetric frequency response of X displacement although the nonlinear values
were too smaller. In Y and θ displacements, the response peaks were just observed at the first asymmetric
frequency in nonlinear model. The frequency responses of X displacement in Fig. 4 showed that the
nonlinear model only had a response peak in the first mode of symmetric frequency, whereas in Y and θ
displacements, each model had a peak at the first torsional-lateral frequency and the linear one showed a
greater value. It can be inferred that the more the increased amplitude of harmonic excitations, the larger the
difference between responses of two models would be. Studying base isolation's DOFs represented similar
results to those of the superstructure ones.

Figure 3. Time history and frequency content of structure type 2 under frequency ratio Ω=1

The nonlinear model in the initial time indicated the same performance as the linear one; i.e. the DOFs
of symmetric direction behaved independently from other DOFs of the structure until the specific time, when
the symmetric responses of the structure absorbed a certain amount of excitation energy; from that moment
called saturation moment, the performance of the two models became different. In other words, when X
displacement responses reached the specific energy, it was saturated; afterwards, all the responses of the
nonlinear model in three directions acted as coupled variables and the energy transferred from dominant
response in symmetric direction with high natural frequency (Ω=1) to dominant response in lateral and
torsional directions with low natural frequency (Ω=Ω1); so, the amplitudes of the X displacements were
reduced, while the amplitudes of Y and θ directions were increased compared with that of the linear model.
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This behavior of the nonlinear model was called saturation phenomenon and can be observed in Fig. 3.

Figure 4. Time history and frequency content of structure type 2 under frequency ratio Ω=Ω1

However, saturation phenomenon did not occur in Fig. 4, so that indication of nonlinear behavior
could not have a start point. Hence, the energy transferred from low natural frequency (Ω=Ω1) to high
natural frequency (Ω=1) at the very beginning of the oscillation.

VARIATIONS OF BASE ISOLATION TORSIONAL FREQUENCY

As was mentioned, base isolation frequencies in the symmetric and asymmetric directions were
identical to each other (xb=yb=0.1). To observe soft, normal, and hard situations of the base isolation
torsion to the first mode frequency of symmetric frequency, a range of ωθb/ωx1 between 0.6 and 1.4 was
assumed. The eccentric ratios of base isolation were provided using Eqs. (23) and (24) under proportional
and subtractive resonances, respectively (Fig. 5). The results were just obtained under Kobe earthquake for
the superstructure although the base isolation DOFs yielded the same ones.

(a) (b)
Figure 5. Maximum responses for the range of ωθb/ωx1 under exb/r corresponding to

(a) proportional and (b) subtractive resonance

The X displacements of linear responses were always constant, while the nonlinear ones indicated
greater values. Stability of linear responses in the symmetric direction was because of the independence of
linear equation from torsional-lateral properties such as ωθb and exb, while the DOFs of nonlinear model were
correlated due to the nonlinear inertia terms, which caused the energy transfer. In Y and θ displacements, the
nonlinear responses were almost greater than those of the linear ones under the proportional resonance as
well as the soft situation under subtractive resonance. By approaching two model responses in the larger
ωθb/ωx1, it can be inferred that effect of nonlinear inertia was reduced, while ωθb/ωx1 increased. The nonlinear
model was more critical than the linear one; so, the nonlinear inertia effects should be considered in the
design of structures.
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CONCLUSIONS

Movement of asymmetric base-isolated structure was described by 6 DOFs. The motion equations of
two linear and nonlinear models were represented in terms of two coordinate systems defined for such
degrees of freedom. Time history and frequency responses of two structures were studied under harmonic
excitations. Maximum historical responses of the linear and nonlinear models were compared with the
variations of ωθb. The results of observation is summarized as follows:

- Time history and frequency content of two linear and nonlinear models were in exact coincidence in
the structure type 1. This coincidence was independent from the amplitude and frequency of excitation as
well as the arrival angle of excitation under harmonic forces.

- In the saturation phenomenon, the energy absorbed by the response of one direction was saturated at
the specific moment; after that time, the rest of energy, which had the harmonic response with greater natural
frequency, was transferred to the other direction with lower natural frequency. In the energy transfer
phenomenon similar to the saturation phenomenon, transfer of energy occurred, with the difference that the
transition began from the first moments of excitation and did not have any specific strating point. This
nonlinear behavior can be observed in the structure type 2.

- Investigating of the variations of base isolation torsion showed that the nonlinear model was more
critical. The nonlinear model should be employed to provide design criteria.

- The difference between the responses of the linear and nonlinear models was because of the
existence of nonlinear inertial terms in the nonlinear model which caused the DOFs of the symmetric and
asymmetric directions behave dependently.
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