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ABSTRACT 

In this research, we develop a linear relationship between seismic time-history parameters and 
earthquake losses to obtain a model that is able to estimate economic losses of lifeline systems including 
transportation, communication, potable water and waste water, natural gas systems and electric power 
networks. 

We considered economic losses of lifeline systems as a dependent variable and seismic parameters as 
independent variables. Stepwise multiple linear regressions were used to create a linear equation between the 
monetary value of losses and the seismic parameters of Peak Ground Acceleration (PGA), Peak Ground 
Velocity (PGV) and Peak Ground Displacement (PGD) at various earthquakes. 

Usually earthquake losses are not limited to physical losses but possible contain very widespread 
dimensions, example loss of output because of generate abeyance, reduction of consumption because of 
diminish social activities, etc. Losses linked with effects would be very huge and vaster than those counted 
just through physical damages. 
The method is used in current research is Input-Output (I-O) effect analysis. I-O table is a compendium 
accounting of all purchases and sales across components in a given zone. In this analysis, Iran is considered 
as a region. Thus, we use Iran’s input-output table, the indirect losses due to damage of lifeline systems in 
past earthquakes of Iran evaluated by the inter-industry relation. 

INTRODUCTION 

Losses from earthquakes are usually associated with building and other property damage. However, 
many businesses are forced to shut down, even if physically unscathed, when suppliers of lifeline services or 
other inputs are disrupted, or if their employees are unable to reach the workplace. Likewise, businesses may 
be forced to curtail operations if orders for their products are canceled by their customers, or if they are 
unable to deliver their products to market. Moreover, these impacts pertain not only to immediate suppliers 
and customers, but to successive rounds of upstream or downstream links (Okayama and Chang, 2004). 

While significant progress has been made in recent years for the economic analysis of disasters, 
especially in the field of economic modeling for disaster impact the recent advancements have been more 
toward short-run impact analysis with the strategies for modeling extensions and modifications to fit them to 
disaster situations rather than toward evaluation of long-run effect of such events (Okayama, 2014). 

Natural hazards, such as earthquakes, reason misadventure when they impacts huge residence example 
urban zones.  
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Direct losses including damages in buildings and lifelines can cause non-structural or indirect losses as 
interruption of business activities and services. Loss estimation methods have been developed to evaluate 
losses from earthquakes and other natural hazards. Economic losses by severe earthquakes can cause long-
term reductions in the growth of a nation’s economy and trigger inflation (Kundak, 2004). 

To reach a compatible measure, the real failure must be connected to the economic losses, and then 
Interpretation into direct trade abeyance losses and chain reaction, or ripple effects, that happens all-over the 
economy. Some of methods have been used to calculation indirect effects. Econometric studies estimate the 
totality of effects on the economy and therefore conclude indirect effects.  

Econometric models have only rarely been used in regional economic loss estimation because of their 
expense, huge data demands, and difficulty in distinguishing direct and higher-order effects. The statistical 
rigor of these models requires time series data with at least ten observations (typically years) and preferably 
many more. Data needed are not usually available at the regional level for this purpose, so various data 
reduction strategies have been developed, as in the case of Input-Output (I-O) and Computable General 
Equilibrium (CGE) models (Cummins and Mahul, 2009). 

The current method is Input-Output (I-O) effect analysis. It can be transformed into a model 
capitalizing on the interactions inherent in an economy to show how a decline in economic activity in one 
sector results in ripple (or multiplier) effects through successive chains of producers and/or consumers. A 
Process to loss calculation used mathematical optimization methods, which is especially useful for policy-
making due to it identifies the potential for loss reduction (Brookshire et al., 1997). 

In lifeline systems study, a real time methodology is developed to estimate direct and indirect 
economic losses, which stems from damages to a power supply system in a probable future earthquake. The 
methodology integrates physical damage assessment, power flow connectivity, post-earthquake restoration, 
direct economic loss to system and business interruption for estimating the indirect economic losses. The 
methodology is new in that it considers all possible path flows that supply power flow to distribution 
substations, which supply power for customers, and further, the most reliable path flow to each distribution 
substation is found. This model simulates damage to components of lifeline system and how the situation 
improves as repairs are made. Indirect economic losses from business interruption are evaluated 
probabilistically consistent with engineering damage estimation (Bastami, 2007). 

MULTIPLE LINEAR REGRESSION 

A Multiple linear regression (MLR) model assumes that there is a linear relationship between a 
dependent variable and independent variables, y. An MLR model can be described using the following 
equation: 
 
                                  y  ൌ  β   βଵXଵ   βଶXଶ   βଷXଷ   …  β୩X୩    ε                                   (1) 

 
Where ሼXଵ, . . . , X୩ሽ independent variables, β is the regression model constant, βଵ to β୩ are the 

coefficients corresponding to the descriptors Xଵ to X୩ and y is dependent variable. The values for β to β୩ 
are chosen by minimizing the sum of squares of the vertical distances of the points from the hype plane so as 
to give the best prediction of y from x (Dumarey et al., 2008; Gavami and Sepehri, 2012). 

ANOVA is a statistical method very commonly used in checking the significance and adequacy of the 
calculated linear regression model. To employ ANOVA in regression, three primary sum-of-squares values 
are needed: the total sum of squares, SST, the sum of squares explained by the regression SSR, and the sum of 
squares due to the random error, SSE. The total sum of squares is merely the sum of squares of the 
differences between actual y୧ observations and the yത mean: 

  
                                                                  SST ൌ ሺy୧ െ yതሻଶ                                                                    (2) 
 
The total sum of squares ሺy୧ െ yതሻଶ includes both the regression and error effects in that it does not distinguish 
between them. The sum of squares, due to regression (SSR), is the sum-of-squares value of the predicted 
values (ŷ୧) minus the yത mean value: 

 
                                                                  SSR ൌ ሺŷ୧ െ yതሻଶ                                                                    (3) 
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Finally, the sum-of-squares error term (SSE) is the sum of the squares of the actual ŷ୧ values minus the 
predicted ŷ୧ value: 
                                                                   SSE ൌ ሺy୧ െ ŷ୧ሻଶ                                                                  (4) 

As is obvious, the sums of SSEand SSR equal SST: 
                                
                                                                  SST ൌ SSR  SSE                                                                    (5) 

Rଶ, the coefficient of determination, and SSE, the sum of squares error term, can be used to help find 
the best subset (k) of x୧ variables. Rଶ and SSE are denoted with a subscript k for the number of ݔ variables in 
the model. When R2 is large,  SSE tends to be small, because the regression variability is well explained by 
the regressors, so random error becomes smaller. 

                                                       Rଶ  ൌ  1 െ SSE/SST  ൌ   SSR/SST                                                    (6) 

Another way of determining the best k number of x୧ variables is using Adjusted R-squared (Adj. Rଶ) and MSE. 
The mean square error (MSE) is used to predict the sample variance or MSE ൌ Sଶ. Where  

                                                                            MSE ൌ
SSE
୬ିଶ

                                                                                    (7) 

The model with the highest Adj. ܴ2 also will be the model with the smallest ܧܵܯ. This method better takes 
into account the number of ݅ݔ variables in the model. 

                                                                 Adj Rଶ  ൌ  1 െ ሺ୬ିଵሻSSE
ሺ୬ି୩ሻSST

                                                                       (8) 

Where SSE, is the full model error sum of squares;  SST is the full model total sum of squares; n-1 is the 
sample size less 1; and n-k is the sample size minus the number of variables in the present model (Verma and 
Hansch, 2010; Paulson, 2007). 

Backward elimination: This method begins with a full set of predictor variables in the model. Each ݔ 
predictor variable in the model is then evaluated as if it were the last one added. Some strategies begin the 
process at x୩ and then, x୩ିଵ and so forth. Others begin with xଵ and work toward x୩. 

Forward selection: In this procedure,  x୧ predictor variables are added into the model, one at a time. 
The predictor thought to be most important by the researcher generally is added first, followed by the second, 
the third, and so on. If the contribution of the predictor value is unknown, one easy way to find out is to run k 
simple linear regressions, selecting the largest ܴ2 of the k as xଵ, the second largest ܴ2 as xଶ, and so 
forth(Brown et al, 2009; Paulson, 2007). 

Stepwise regression: It’s a very popular regression procedure, because it evaluates both values going 
into and values removed from the regression model. In this method variables are selected by an elimination 
stepwise selection procedure, which combines the forward selection and backward elimination approaches. If 
the inclusion of this variable results in a significant improvement of the regression model, evaluated with an 
overall F-test, it is retained and the selection continues. In a next step the variable that gives the largest 
significant decrease of the regression sum of squares, evaluated with a partial F-test, is added. After each 
forward selection step a backward elimination step is performed. In this step a partial F-test for the variables, 
already in the equation, is carried out. The procedure stops at the moment that no variables fulfill the 
requirements anymore to be removed or entered. After this selection procedure classical MLR can be applied 
on the retained variables to build a predictive model (Gavami and Sepehri, 2012). 

LOSS ESTIMATION MODEL 

In this research, we create a linear relationship between seismic Time-history parameters and 
earthquake losses to obtain a model that is able to estimate economic losses of lifeline systems including 
transportation and communication systems, potable water and waste water systems, natural gas systems and 
electric power systems in earthquakes by using the seismic data and data lifeline systems economic losses of 
Rudbar and Manjil 1990, Ardabil 1996, Bam 2003, Silakhoor 2006, East Durood 2010, Varzaghan 2012, 
Borazjan 2013, Murmuri 2014 and Bastak 2014 earthquakes. They are economic losses Data to the following 
shown in tables: 
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Table 1. Economic losses natural gas systems 
Economic losses(Million Rials) DateEarthquake 

1500 6/11/2010 East Durood 
127100 11/8/2012 Varzaghan 

 
Table 2. Economic losses electric power systems 

Economic losses(Million Rials) DateEarthquake 
18000 20/6/1990 Rudbar and Manjil 
6500 30/12/1996 Ardabil 
67000 26/12/2003 Bam 
13250 31/3/2006 Silakhoor 
3024 6/11/2010 East Durood 

142050 11/8/2012 Varzaghan 
170000 10/4/2013 shounbeh 
35000 18/8/2014 Murmuri 

 
Table 3. Economic losses transportation and communication systems 

Economic losses(Million Rials) DateEarthquake 
3628.9 20/6/1990 Rudbar and Manjil 

530 30/12/1996 Ardabil 
6183 31/3/2006 Silakhoor 
1515 6/11/2010 East Durood 
10000 18/8/2014 Murmuri 

 
Table 4. Economic losses potable water and waste water systems 

Economic losses(Million Rials) DateEarthquake 
19221.717 20/6/1990 Rudbar and Manjil 

6800 30/12/1996 Ardabil 
43535.7 31/3/2006 Silakhoor 

9500 6/11/2010 East Durood 
171920 11/8/2012 Varzaghan 
13000 10/4/2013 Shounbeh 
3500 28/11/2013 Borazjan 

162000 2/1/2014 Bastak 
364000 18/8/2014 Murmuri 

 
Because of Iran’s high inflation rate in years that earthquake happen; the monetary value of the losses 

is different. So the monetary value of losses caused by an earthquake in the lifeline systems calculated 
according to the annual inflation rate. In this research, base year is considered 2006. Therefore, to estimate 
economic loss according to the annual inflation rate, we propose a model to estimate the economic losses of 
earthquakes. 

Monetary value of Equivalent (Oskuei Nejad, 1996): 
1) The monetary value loss of earthquakes happens before 2006: 

                                                                   E୧ାଵ ൌ E୧  ቀNశభ
ଵ

ൈ E୧ቁ                                                       (9) 

Where E୧, The monetary value in year i, ܰାଵ, The inflation rate in year i+1 and ܧାଵ, The monetary value 
in year i+1. 
2) The monetary value loss of earthquakes happens after 2006: 

ିଵܧ                                                                     ൌ ൬
ଵ

ଵାேೕ
൰ ൈ                                                          (10)ܧ                           

Where E୨, The monetary value in year i, N୨, The inflation rate in year i+1 and E୨ିଵ, The monetary value in 
year j-1. 

In this research, we were considered economic losses of lifeline systems as a dependent variable and 
seismic parameters as independent variables. Stepwise multiple linear regressions were used to create a 
linear equation between the monetary value of losses and the seismic parameters of PGA, PGV and PGD.  

In statistical terms, the relationship between variables is denoted by the correlation coefficient, which 
is a number between 0 and 1. Pearson Correlation Coefficient test is used to measure the strength of a linear 
association between two variables, where the value r=1 means a perfect positive correlation and the value r 
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=-1 means a perfect negative correlation. If there is no relationship between the variables under investigation 
(or between the predicted values and the actual values), then the correlation coefficient is 0, or non-existent. 

 The Pearson’s r for the correlation between the Loss and PGD variables is 0.969. This means that 
there is a strong relationship between two variables and changes in PGD variable are strongly correlated with 
changes in the Loss variable. In here, Pearson’s r is 0.969. This number is very close to 1. For this reason, we 
can conclude that there is a strong relationship between Loss and PGD variables.  

If the Sig (2-Tailed) value is less than or equal to 0.05, we can conclude that there is a statistically 
significant correlations between your two variables. That means, increases or decreases in one variable do 
significantly relate to increases or decreases in your second variable. The Sig. (2-Tailed) value in our 
example is 0.000. This value is less than 0.05. Because of this, we can conclude that there is a statistically 
significant correlation between Loss and PGD. 
 

Table 5. Pearson Correlations 
 Loss PGA PGV PGD 

Loss 
Pearson Correlation 1 0.511** 0.859** 0.969** 

Sig. (2-tailed)  0.000 0.000 0.000 

PGA 
Pearson Correlation 0.511** 1 0.696** 0.536** 

Sig. (2-tailed) 0.000  0.000 0.000 

PGV 
Pearson Correlation 0.859** 0.696** 1 0.917** 

Sig. (2-tailed) 0.000 0.000  0.000 

PGD 
Pearson Correlation 0.969** 0.536** 0.917** 1 

Sig. (2-tailed) 0.000 0.000 0.000  
**. Correlation is significant at the 0.01 level (2-tailed). 

 
The Table 6 is “model summary”. This is an important one, as it gives us the measures of how well 

our overall model fits, and how well your prediction, is able to predict dependent variable. The first measure 
in the table is called R. This is a measure of how well our predictors predict the outcome, but we need to take 
the square of R to get a more accurate measure. This is R-squared, which is shown in the next column. This 
gives us the amount of variance in reading scores explained by the independent variable and predictor, 
dependent variable. R-squared varies between 0 and 1. The value ܴ2 ൌ 0.940 indicates that nearly  94% of 
the total  variability in the dependent variable is accounted by the predictor variable. The high value of R2 
indicates a strong linear relationship between dependent variable and the seismic parameter of Peak Ground 
Displacement (PGD).  

The adjusted R-squared is a modified version of R-squared that has been adjusted for the number of 
predictors in the model. The adjusted R-squared increases only if the new term improves the model more 
than would be expected by chance. It decreases when a predictor improves the model by less than expected 
by chance.  

Table 6. Model summaryb 

Model R R Square Adjusted R Square Durbin-Watson 

1 0.969a 0.940 0.939 1.935 
a. Predictors: (Constant), PGD b. Dependent Variable: Loss 

 

Table 7 provides the completed ANOVA model of this evaluation. What we do see here is the F-test 
outcome that we mentioned earlier as giving a measure of the absolute fit of the model to the data. Here, the 
F-test outcome is highly significant (less than 0.001, as you can see in the last column), so the model does fit 
the data. A straight line, depicting a linear relationship, described the relationship between these two 
variables. 
 

Table 7. ANOVAa 
Model Sum of Squares df Mean Square F Sig. 

1 

Regression 447400856592.635 1 447400856592.635 825.740 0.000b 

Residual 28716353481.743 53 541817990.222   
Total 476117210074.378 54    

a. Dependent Variable: Loss b. Predictors: (Constant), PGD 
 

The Table 8 gives us some important information, as that is where we will be able to look at the Beta 
and significance of our predictor (PGD). Standardized regression coefficients remove the unit of 
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measurement of predictor and outcome variables. There are many good reasons to report them: They serve as 
standardized effect size statistics and allow you to compare the relative effects of predictors measured on 
different scales.  

The column headed “Standardized Coefficients”, contains the Beta coefficient. This is 0.969. If you 
look back at the section on Pearson’s r correlation coefficient, you will see that this is in fact the same value. 
When we look at the relationship between just two variables, Beta in a regression output will always give us 
the same value as the correlation coefficient. 

The final column in Table 8 gives us the statistical significance of the relationship between the 
independent and the dependent variables. In other words, how likely is it that we would have found a 
relationship enough strong in our sample, if there was not one in the actual population under study. As we 
can see, the relationship is statistically significant at the 0.001 level. 

 

Table 8. Coefficients 

Model 
Unstandardized Coefficients Standardized Coefficients 

t Sig. 
B Std. Error Beta 

1 
(Constant) 10153.407 4159.448  2.927 .005 

PGD 413989.141 14406.791 0.969 28.736 .000 
 

So, model based on the standardized coefficient and the annual inflation rate is: 
                                       

                                    Loss୬ ൌ ሾ0.969ሺܲܦܩሻ௦ േ ∏ఈσሿߝ ቀ1  Nశభ
ଵ

ቁ୬ିଵ
୧ୀଶ                                                       (11) 

Where   is the standard deviation, it is value of the normal distribution curve, 0.991 (Figure 1). 
And, 

                                                                   ሺܲܦܩሻ௦ ൌ
ீିீതതതതതത

ఙುಸವ
                                                                          (12) 

 ீ, are mean value and standard deviation of PGD, respectively. N୧ାଵ, is Iran’s annual inflationߪ തതതതതതandܦܩܲ
rate (in terms of Percent). 

Table 9. Mean value and standard deviation of PGD 
 Mean Std. Deviation 

PGD 0.1025615 0.21986828 

 

 
Figure 1. Normal distribution curve 

ESTIMATION OF INDIRECT ECONOMIC LOSSES CAUSED BY EARTHQUAKE 

Usually earthquake losses are not limited to physical losses but possible contain very widespread 
dimensions, example loss of output because of generate abeyance, reduction of consumption because of 
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diminish social activities, etc. losses linked with effects would be very huge and vaster than those counted 
just through physical damages. 

Given the possibility of alternative damage patterns across various business sectors, linked business 
activities are potentially vulnerable beyond sustaining just direct damage. Thus, the term indirect damage 
means any loss other than that directly produced by a disaster. These potential losses are not confined to 
immediate customers or suppliers of damaged enterprises. All of the successive rounds of customers of 
customers and suppliers of suppliers are impacted. In this way, even limited earthquake physical damage 
causes a chain reaction, or ripple effect, that is transmitted throughout the regional economy (Brookshire et 
al., 1997). 

The current method is Input-Output (I-O) effect analysis. I-O table is a compendium accounting of all 
purchases and sales across components in a given zone. In this analysis, Iran is considered as a region. Thus, 
we use Iran’s input-output table, the indirect losses due to damage of lifeline systems evaluated by the inter-
industry relation. 

Such economic loss in i-th industry (for example electric power systems), decrease productions of 
other industries which depend on the products of i-th industry, even if their facilities suffered no direct 
damages by the earthquake. In this study, the ripple effects of direct economic losses is considered as indirect 
economic losses, and is analyzed through an inter-industry relation analysis(Kawashima and Kanoh, 1990). 

An inter-industry relation table has a form of Table 9 in which I୧ represents i-th industry. The relation 
may be written as 

.ܣ                                                                          ܺ  ܨ ൌ ܺ                                                                      (13) 

Where  A : Input coefficient matrix, X : Product vector, and X ൌ ሼXଵ, Xଶ,… , X୬ሽT, F : Final demand vector and 
F ൌ ሼfଵ, fଶ, … , f୬ሽT. 
 

Table 10. Inter-industry Relation Table (Input-Output Table) (Ronald et al., 2009) 

Products Final 
Demand 

Intermediate Demand 
Purchase/Sell 

 Iଶ Iଵ ڮ I୧ ڮ I୨ ڮ
  Iଵ 

In
te

rm
ed

ia
te

 S
al

es
 

  Iଶ 
 ڭ  
X୧ f୧ڮX୧୨ڮX୧୧ڮڮڮ I୧ 
 ڭ  
X୨ f୨ڮX୨୨ڮX୨୧ڮڮڮ I୨ 
 ڭ  

 Gross Value Added ڮڮڮV୧ڮV୨ڮ 
 Products ڮڮڮX୧ڮX୨ڮ

 
In this analysis, Iran is considered as a region. Thus, we use Iran’s input-output table, the indirect 

losses due to damage of lifeline systems evaluated by the inter-industry relation.  
Table 11 shows the direct loss and indirect loss in the lifeline systems (in terms of Percent). Because 

most of activities are dependent on Electric power, in that Electric power has the maximum amount of 
indirect loss (Nearly 52.35%). 

Table 11. Share of direct losses and indirect losses (%) 
Lifeline system Indirect Economic loss  Direct Economic loss 
Electric power 52.35 47.65 

potable and waste water  40.99 59.01 
communication 24.07 75.93 

natural gas 32.15 67.85 

CONCLUSIONS 

In this short article we have attempted to obtain a model that is able to estimate economic losses of 
lifeline systems and estimate economic loss according to the annual inflation rate. We use multiple linear 
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regression techniques to assess the model estimated direct loss and propose a model to estimate the economic 
losses of earthquake.  

In this research, obtained a model based seismic parameter PGD, because the correlation between the 
Loss and PGD variables is a strong relationship. The value R2 indicates that nearly 94% of the total 
variability in the dependent variable is accounted by the predictor variable. 

The estimation of economic losses lifeline systems is important in earthquake loss estimation. It has 
demonstrated the importance of estimation indirect as well as direct losses in understanding the total 
economic impact of an earthquake. However, we were emphasized, especially in linking physical damage 
and economic loss lifeline systems. 

For analyzing economic losses effects an earthquake, an analytical method with use of the inter-
industry relation check, which has been was applied to the earthquake. Indirect loss is very important for 
assessing an extent of the hit effect of earthquake.  
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